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Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL),

1015 Lausanne, Switzerland

(Dated: November 2018)

This report is based on the review article by E.M Sevick et al.[1] on the fluctuation theorem. I
also refer to the original papers of Jarzynski [2–4] and adopt notation from a book written by Evans
et al.[5]. I discuss the motivation for proposing the fluctuation theorem and provide a detailed
derivation of the Evans-Searles Fluctuation Theorem, which shows how macroscopic irreversibility
emerged from the time-symmetrical equation of motion and addresses the importance of the initial
condition of the system. I also recap the derivation of the Crooks Fluctuation Theorem to relate
work and free energy of a non-quasistatic process between two states of equilibrium, and I then
take the Jarzynski equality as a consequence of the Crooks Fluctuation Theorem. In section III,
it is shown that a simple physical example with an analytical solution can be used to verify these
relations.

I. INTRODUCTION

Fluctuation theorems present an analytical description
of violations of the second law of thermodynamics; how-
ever, they also provide rigorous proof to this law from
a statistical perspective. Classical thermodynamics can
only deal with equilibrium systems and quasistatic pro-
cesses. The behaviours of non-equilibrium systems are
unclear within this scheme. Moreover, reversible equa-
tions of motion conflict with the monotonically increas-
ing entropy predicted by the second law. Boltzmann’s
statistical thermodynamics provides the groundwork for
solving this problem by using the second law as a statis-
tical law. However, he was not able to determine a quan-
titive relation. The most recent progress toward this end
was the development of the fluctuation theorem in the
1990s.

In 1994, Evans and Searles[6] proposed the fluctua-
tion theorem, which calculates the probability of neg-
ative and positive entropy production. It is valid for
systems of any size and with arbitrary distances from
equilibrium. It illustrates how irreversible macroscopic
phenomena emerge from time-reversible equations of mo-
tion. In 1997, Jarzynski[2] developed a more practical
relation, Jarzynski equality, which allows us to establish
the relationships between work and free energy changes
for a non-quasistatic process between two states of equi-
librium. This relation reveals more information than
do classical thermodynamics, which only reveals discrep-
ancies between work and free energy differences. The
next year, Crooks[7] developed a more general form of
the Jarzynski equality: the Crooks Fluctuation Theo-
rem. This theorem calculates the relative probability of
given forward and backward trajectories.

In this report, I recap the derivations of these relations
based on a deterministic Hamiltonian system. I include
a short introduction to phase spaces at the beginning
and then follow the logical order rather than the chrono-
logical order of theorem development (which regards the
Jarzynski equality as a consequence of the Crooks Fluc-

tuation Theorem). It is also demonstrated how to view
the second law of thermodynamics is a consequence of
the fluctuation theorem.

II. DERIVATION OF FLUCTUATION
THEOREMS

A. Phase space and Liouville’s Equation

In Hamiltonian mechanics, all possible states of a sys-
tem expanded a phase space. A typical system in our
scale has more than ∼ 1023 particles. Thus, it is not
possible to know their exact configurations, so we use
a probability distribution function to characterise such
systems. By denoting the probability distribution func-
tion as f(Γ, t), the probability of finding the system in
an infinitesimal phase space volume dΓ is

P (dΓt, t) ≡ f(Γt, t)dΓt. (1)

For a Hamiltonian system, the total time derivative of
f is

df

dt
=
∂f

∂t
+
∂f

∂p
ṗ+

∂f

∂q
q̇

=
∂f

∂t
+
∂f

∂Γ
· Γ̇.

(2)

The continuity equation must hold for the probability
flow in the phase space

∂(f Γ̇)

∂Γ
+
∂f

∂t
= 0. (3)

Using these two equations to eliminate the partial deriva-
tive of t, one obtains

df

dt
= −f ∂Γ̇

∂Γ
. (4)
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We now denote Λ ≡ ∂Γ̇
∂Γ , and integrate from the initial

time t = 0 to t = τ

f(Γτ , τ) = f (Γ0, 0) exp

(
−
∫ τ

0

Λdt

)
. (5)

As the probability of a specific phase space volume
must be conserved, we can use Eq. (2) and Eq. (5) to
obtain the compression factor for the infinitesimal phase
space volume:

dΓτ
dΓ0

= exp

(∫ τ

0

Λds

)
. (6)

B. The Evans-Searles Fluctuation Theorem (1994)

The Evans-Searles fluctuation theorem is the most gen-
eral one, and it can be applied to a system of any size
and any distance from equilibrium.

Using time evolution operator St to denote the evo-
lution of a phase space point for a period t and time-
reversal mapping operator MT to reverse the trajectory.
For a Hamiltonian system, the reverse mapping is noting
but reversing the momentum p → −p. Since the dy-
namics are deterministic, a trajectory can be determined
by its initial state. For a trajectory origin at phase point
Γ0, the corresponding anti-trajectory can be easily repre-
sented by its initial phase point Γ∗0 ≡MTΓt = MTSτΓ0.
Note that the time-reversal mapping does not change the
size of phase space volume. With Eq. (6), we can obtain

dΓ∗0 = dΓτ = dΓ0 exp

(∫ τ

0

Λdt

)
. (7)

Alongside the trajectory of a single-phase space point,
we also consider the evolution of an infinitesimal phase
space volume dΓ0; that is, a bundle of trajectories. The
probability of observing this volume is

P (dΓ0, 0) ≡ dΓ0f(Γ0, 0). (8)

Macroscopic reversible systems indicate that the proba-
bility of observing the forward bundle of trajectories and
the corresponding anti-trajectories should be the same:

dΓ0f(Γ0, 0) = dΓ∗0f(Γ∗0, 0). (9)

For more general cases, we define a dissipation function to
characterize the reversibility of the bundle of trajectories

Ωτ (Γ0) ≡ ln

(
P (dΓ0, 0)

P (dΓ∗0, 0)

)
= ln

(
f(dΓ0, 0)

f(dΓ∗0, 0)

)
−
∫ τ

0

Λdt.

(10)

The positive dissipation function means the anti-
trajectories are less probable, and the negative dissipa-
tion function gives the opposite case. It takes the value
0 only in the state of equilibrium, where no macroscopic
time evolution can be observed. Moreover, the dissipa-
tion function has odd parity

Ωτ (Γ0) = −Ωτ (Γ∗0). (11)

Now it is important to calculate the probability of an
anti-trajectory occurring within the entire phase space.
We can do the following integral to calculate the relative
probability of the dissipation function taking the opposite
value.

p(Ωτ = A)

p(Ωτ = −A)

=

∫
dΓ0δ(Ωτ (Γ0)−A)f(Γ0, 0)∫
dΓ∗0δ(Ωτ (Γ∗0) +A)f(Γ∗0, 0)

=

∫
dΓ0δ(Ωτ (Γ0)−A)f(Γ0, 0)∫

dΓ∗0δ(−Ωτ (Γ0) +A)f(Γ∗0, 0)

=

∫
dΓ0δ(Ωτ (Γ0)−A)f(Γ0, 0)∫

dΓ0δ(−Ωτ (Γ0) +A)f(Γ0, 0) exp(−Ωτ (Γ0))

= exp(A),

(12)

where we used the fact that Γ0 is a dummy variable for
the integral over the whole phase space. Then we use
the Eq. (11). To calculate the third equality, we used the
Eq. (7) with the definition of the dissipation function.
The result,

p(Ωτ = A)

p(Ωτ = −A)
= exp(A), (13)

implies that for all trajectories in the phase space, irre-
versible cases are exponentially more probable than are
reversible cases. We can further calculate the average of
the dissipation function over the whole phase space:

〈exp(−Ωτ )〉 =

∫ ∞
−∞

dA exp(−A)p(Ωτ = A)

=

∫ ∞
−∞

dA exp(A)p(−Ωτ ) exp(A)

=

∫ ∞
−∞

dA p(Ωτ = −A)

= 1.

Note that exp(−Ωτ ) is convex function, which lead to the
Jensen’s inequality

〈Ωτ 〉 ≥ 0. (14)

This is exactly what we expect – the second law inequal-
ity.
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C. Crooks Fluctuation Theorem (1998)

Crooks Fluctuations Theorem and the Jarzynski equal-
ity address the non-equilibrium processes between two
equilibriums (unlike classical thermodynamics, which can
only describe quasistatic work relations). Jarzynski
equality directly presents the work relation regarding ac-
tions performed at any rate. The Crooks Fluctuation
Theorem even measures the probability distribution of
trajectories. These relations allow us to describe certain
microscopic operations, such as the stretching of a poly-
mer.

The Crooks Fluctuation Theorem was developed later
than the Jarzynski equality. However, as it is a more gen-
eral formula, we view the Jarzynski equality as a direct
consequence of the Crooks Fluctuation Theorem in the
following discussion. The Crooks Fluctuation Theorem
reads

pf (W = A)

pr(W = −A)
= exp (β(A−∆F )) , (15)

where pf (W = A) is the probability of work done on the
system W = A between the initial equilibrium state A to
the final equilibrium state B. Additionally, pB(W = A)
is the probability distribution of the reverse trajectories.
On the right-hand side, ∆F is the free energy difference
between the two states, and β ≡ 1

kBT
is the reverse tem-

perature of the heat bath.
The external work is introduced by a control parameter

λ. The Hamiltonian of the system can be written as

H(Γt, t, λt) = T (p) + V (q, λ), (16)

where T and V are the kinetic energy and the poten-
tial, respectively. The potential can be adjusted by the
external control parameter λ and varies from the initial
value λ = A to the final value λ = B. If it varies slowly
enough, it becomes a trivial quasistatic case. In more
general cases, an external agent drives the system out of
equilibrium before it relaxes into a state of equilibrium
once again.

Initially, the system is in contact with a heat bath at a
temperature of T = 1

kBβ
. Thus, it is a canonical ensemble

characterized by the Boltzmann probability distribution:

p(H(Γ0, A)) =
1

ZA
e−βH(Γ0,A). (17)

Then the λ varies from an initial value of A to a final
value of B in a specific protocol. The final equilibrium
state has the probability distribution

p(H(Γτ , B)) =
1

ZB
e−βH(Γτ ,B), (18)

and the change of Hamiltonian can be written as

H(Γτ , B)−H(Γ0, A) =

∫ τ

0

dt
∂H(Γ, λ)

∂λ
λ̇+

∂H(Γ, λ)

∂Γ
· Γ̇

(19)
The first term of the integral is the total work done on
the system, and the second term is the heat absorbed
from the environment[8].

Q(Γ0, τ) ≡
∫ τ

0

dt
∂H(Γ, λ)

∂Γ
· Γ̇ = kBT

∫ τ

0

Λ(Γt)dt

(20)

W (Γ0, τ) ≡
∫ τ

0

dt
∂H(Γ, λ)

∂λ
· λ̇. (21)

Hence, we can express the work done as a function of the
energy difference associated with the initial and the final
states, and we can express the phase space compression
factor as

W (Γ0, τ) = H(Γτ , B)−H(Γ0, A)− kBT
∫ τ

0

Λ(Γt)dt.

(22)
As time evolution is deterministic for a Hamiltonian

system, the probability distribution of trajectories with
W = A is directly determined by the initial distribution
function associated with the work parameter λ = A

pf (W = A) =

∫
dΓ0δ(W (Γ0, τ)−A)p(H(Γ0, A)). (23)

In the same way, we can write the probability of the anti-
trajectories during which the system does work A to the
external agent:

pb(W = −A) =

∫
dΓ∗0δ(W (Γ∗0, A) +A)p(H(Γ∗0, B)).

(24)
Based on the results obtained, we can write the relative

probability as

pf (W = A)

pb(W = −A)

=

∫
dΓ0δ(W (Γ0, τ)−A)p(H(Γ0, A))∫
dΓ∗0δ(W (Γ∗0, τ) +A)p(H(Γ∗0, B))

=
ZB
ZA

∫
dΓ0δ(W (Γ0, τ)−A)e−βH(Γ0,A)∫
dΓ∗0δ(W (Γ∗0, τ) +A)e−βH(Γ∗

0 ,B)

=
ZB
ZA

∫
dΓ0δ(W (Γ0, τ)−A)e−βH(Γ0,A)∫

dΓ0δ(W (Γ0, τ)−A)e−βH(Γ0,A)e−βW (Γ0,τ)

=
ZB
ZA

eβA

= exp (−β∆F + βA) ,

(25)

where the first equality is direct substitution of Eq. (23)
and (24). Then writing explicitly the equilibrium dis-
tribution leads to the second equality. To get the third
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equality, we used Eq. (22) to rewrite the denominator.
With some simplification, we reach the final expression
which is so-called Crooks fluctuation relation

pf (W = A)

pb(W = −A)
= exp (−β∆F + βA) . (26)

D. Jarzynski equality (1997)

As we mentioned before, Jarzynski equality can be re-
garded as a direct consequence of Crooks fluctuation the-
orem. With this probability distribution of trajectories
given by Crooks FT, we can calculate the Jarzynski av-
erage of the work done on the system between the initial
and final state associated with λ = A and λ = B

〈exp(−βW )〉 =

∫
dA pf (W = A) exp(−βA)

=

∫
dA pb(W = −A) exp(−β∆F )

= exp(−β∆F ).

(27)

This equality is highly useful; it allows for the calcula-
tion of the free energy difference by conducting the ex-
periment many times. Due to the convexity of the expo-
nential function, the Jarzynski equality implies

∆F ≤W. (28)

Therefore we can see it is consistent with the second law
of thermodynamics.

III. EXAMPLE

A. Colloidal in an optical trap

The simplest and most practical example of applying
fluctuation theorems is through a single colloidal in an
optical trap. This system has the smallest possible de-
grees of freedom, and the optic trap can be approximated
as a harmonical potential, which is the simplest poten-
tial providing restoring force. For such a system, we can
obtain an analytical solution to verify the fluctuation the-
orems.

We treat the optical trap as a harmonical potential
with the spring constant k and assume the particle con-
fined in the trap is over-damped; in this way, we can
neglect the kinetic energy. Thus, the Hamiltonian can
be written as

H(Γ0, λ) = φext =
1

2
k2r2, (29)

where λ is the control parameter. In the beginning, k =
k0 and the system is in a canonical distribution

pk0(r) =
2π

βk0
e−β

1
2k0r

2

. (30)

At time t = 0, we suddenly change the intensity of the
laser so that the spring constant jumps to k1. In this
process, the work done on the system is dependent on
the distance from the center at that moment

W =

∫ τ

0

dtλ̇
dφext
dλ

=
1

2
(k1 − k0)r2

0. (31)

Now the system is in a non-equilibrium state and will
relax to a state of equilibrium:

pk1(r) =
2π

βk1
e−β

1
2k1r

2

. (32)

Accordingly, the free energy difference can be directly
obtained from the initial and final equilibrium distribu-
tions:

∆F = −kBT lnZk1 + kBT lnZk0 = kBT ln
k0

k1
(33)

To calculate the Jarzynski average of the work, we can
first find the probability distribution of the trajectories
as a function of work by combining Eq. (30) and Eq. (31):

pk0→k1(W ) = pk0(W ) =
k1 − k0

βk0
e−β

k0W
k1−k0 . (34)

Then, we can easily calculate the Jarzynski average and
confirm the Jarzynski equality:

〈e−βW 〉 =

∫ ∞
0

dW e−βW
k1 − k0

βk0
e−β

k0W
k1−k0

W

=
k1

k0

= e−β∆F .

(35)

Following the same procedure, we can also calculate the
probability of the reverse process pk0→k1(W ) and confirm
the Crooks Fluctuation Theorem:

pk0→k1(W )

pk1→k0(−W )
=

k1−k0
βk0

e−β
k0W
k1−k0

k0−k1
βk1

eβ
k1W
k0−k1

= eβ(W−∆F ). (36)

This example can also be used to verify the Evans-
Searles Fluctuation theorem. Since the Evans-Searles
Fluctuation Theorem requires that all processes are time-
reversible, we need to change the protocol to meet this
condition, which involves changing k1 back to k0 at time
t = τ .

IV. CONCLUSION

Fluctuation theorems bring us a deeper understand-
ing of the irreversible process. Evans-Searles fluctuations
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resolved Loschmidt’s objection to Boltzmann’s statisti-
cal thermodynamics. The Crooks Fluctuation Theorem
and Jarzynski equality are powerful tools for investigat-
ing small systems with non-negligible fluctuations. How-
ever, due to time restrictions, we can only discuss the de-
terministic dynamics described by Hamiltonian mechan-
ics. The quantum version of the fluctuation theorem and
stochastic dynamics are also worth discussing.

V. APPENDIX

A. Hamiltonian mechanics with dissipative force

See in section 2, Fluctuation Theorem, E.M Sevick et
al.[1].

B. Heat absorbed and the phase space compression
factor

In the derivation of the Crooks Fluctuation Theorem,
we used the relation

Q(Γ0, τ) ≡
∫ τ

0

dt
∂H(Γ, λ)

∂Γ
· Γ̇ = kBT

∫ τ

0

Λ(Γt)dt (37)

without proof. For an intuitive understanding, we can
consider a specific case in which heat slowly enters in a
microcanonical ensemble. We begin by writing the above
relation in the instantaneous form:

Q̇(Γt) ≡
∂H(Γ, λ)

∂Γ
· Γ̇ = kBTΛ(Γt) (38)

To understand this, let us consider the case for states of
equilibrium with quasistatic processes, in which Boltz-
mann’s entropy is defined as

S = kB log Ω, (39)

where Ω is the number of states. In a quasi-static process,
we have

dS =
dQ

T
. (40)

Thus,

Q̇ ≡ dQ

dt
= T

dS

dt
= kBT

d

dt
log Ω = kBTΛ(Γ). (41)
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